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ABSTRACT

A mixed system of parabolic and elliptic partial differential equations

is used to describe the carrier transport and potential distribution in semi-
etc .

conductor devices such as MOSFET diodes evtr. A singular perturbation

analysis of the corresponding initial boundary value problem is carried out.

Asymptotic expansions of the solution in powers of the minimal Debeye length

are given. Based on this analysis a finite difference method for the

numerical solution of these problems is developed. Here problems arise due to

different time scales which are intrinsically present in the analytical

problem. These different time scales do not occur in the physical solutions

because of special (equilibrium-) initial conditions. Nevertheless they cause

severe stability problems for finite difference methods. An unconditionally

stable scheme is'developed which minimizes computational effort. Numerical

experiments on a test problem in one space dimension are presented.
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SIGNIFICANCE AND EXPLANATION

In this paper we are concerned with a one dimensional transient model for

a simple p - n junction (i.e. a diode). The model consists of an initial

boundary value problem for a singularly perturbed nonlinear system of elliptic

and parabolic P.D.E.'s in one space and one time dimension. One of the main

purposes of this model is to give information about the "rise-time" of the

p - n junction (the time required to reach a steady state). We carry out our

asymptotic analysis of the problem for large doping concentrations. (This is

the case for modern devices.) We derive asymptotic expansions of the solution

in powers of a singular perturbation parameter which is proportional to the

minimal Debeye-length of the device. It turns out that the solutions vary on

a time scale which is proportional to the average lifetime of electrons and

holes. Therefore the risetimes will be of the same order of magnitude as this

lifetime. In addition to this timescale there is a second "first" timescale

intrinsically present in the problem. This first timescale - although never

observed physically because of special (equilibrium-) initial conditions -

causes severe stability problems in the numerical solution of the problem.

Based on our asymptotic analysis we derive an unconditionally stable finite

difference method for the solution of the p - n junction equations.

0

The responsibility for the wording and views expressed in this descriptive
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NUMERICAL METHODS FOR
TRANSIENT SEMICONDUCTOR DEVICE MODELLING

Christian Ringhofer

1. Introduction

In this paper we present an asymptotic analysis of a singularly perturbed

mixed system of parabolic and elliptic differential equations modelling a

p - n junction. The physical situation is as follows: A semiconductor (for

instance silicone) is doped with acceptor atoms in the left hand side and

donor atoms in the right hand side and a bias U - UA - UC is applied to the

contacts.

anode contact p - side n - side cathode contact

. vA s Aplid U ' ple
anode potential Cathode potential

-IL 0 Z £ 3

The device is assumed to have a characteristic length 2Z (- 0.5*10-3cm) and

the Junction is at x - 0. The device is forward biased for U > 0 and

reverse biased for U < 0. The physics of a p - n junction is explained in

Sze (1969], Ashcroft et al (1976] and R. A. Smith [1978]. The equations

describing the electrostatic potential and the carrier and current densities

were first given by Van Roosebroeck in [1950]. In the case of one space

dimension they consist of

(1.1) - % (n - p - C) (Poisson's equation)
xx e

(1.2) Jn = q(D nnx - n n x) electron current relation

(1.3) Jp - -q(D p + u p p#) hole current relation

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(1.4) nt J + R continuity equations
q n

x

(1.) ~ -J + R for electrons and holes.
Pt qp

The system (1.1) to (1.5) is subject to the boundary conditions

(1.6) *(-lot) -UT In( nt) + UAWt

(1.7) *(At) -UT In((tI) + Uc(t)

(1.8) n(±t,t) p(tt,t) = ni2

(1.9) n(±t,t) - p(JI,t) -C(tl) -0

and the initial conditions

(1.10) *(X,0) Y

(1.11) n(x,0) ni(x)

(1.12) p(X0O) p1 (x)

The dependent variables (with units) are

Table 1

*electric potential MV

xelectric field (Vcm 1l)

n electron density (cm-2)

p hole density (cmr3)

inelectron current density Ai2

J3 hole current density Am2

The parameters q# t p~ 'no 9 Dn, Dp, fl 1 . UT in (1.1) -0(.5) have the

following meaning and approximate values at T a 300K (room temperature)

-2-
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Table 2

q elementary charge 10"1 9As

C permittivity constant 101 2As/VCM 3

*in electron mobility 103 cm2/(Vs)

vp hole mobility 103cm2/(Vs)

ni intrinsic density 1010 c - 3

D D
UT =- - -Z thermal voltage 0.025V

Un Up

C is a given function of x and models the doping profile, i.e.

(1.13) C(x) - N+(x) - N-(x) (cm-3)
DA

where and N are the densities of electrically active donor andD A

acceptor atoms in the doped semiconductor. C(x) is negative for x < 0 (on

the p-side) and positive for x > 0 (on the n-side). We further assume

that C is an odd function i.e.

(1.14) CWx) = -(C-x) holds.

(Although this does not appear to be any special case from the physical point

of view it will simplify the analysis considerably.) We assume that CCx)

has a jump-discontinuity at x - J. R in (1.4), (1.5) denotes the

generation-recombination term and describes the rate at which electron hole

carrier pairs are generated or recombine (vanish). For our purpose it

suffices to consider the Shockley-Read-Hall recombination term

2
npni -3 -1

(1.15) R - R8  (n,p) - tn ) - ( s

Tn and T p denote the average lifetimes of electron and holes. For

simplicity we set T - T - T- 10-6(s). Other mote realistic recombinationn p

rates are given in Langer et al (1981] and Schdtz et al [1981]. In general it

-3-
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can be said that the choice of the recombination rate is not very important

for the behavior of solutions of the time dependent problem (whereas it is in

the steady state case - see Markowich and Ringhofer [1983], Markowich et al

[1983a], Mock [1983] and Schfitz et al [1982]).

A more restrictive assumption is un = up= const. In general U n and

Up can be modelled as functions of the electric field *X" This might

influence the behavior of the solutions considerably (see c.f. Mock [1983]).

For the rest of this paper we assume that the initial conditions (1.10) -

(1.12) are compatible with the boundary conditions and the differential

equation. So we assume that

(1.16) = (nI - pI-C)
xx

(1.17) n(L) p(±) = 2

ni

(1.18) n(±L) - pi(±) - C(U) - 0

n(1.19) *I(-L) - UT Lrn~.I ) + UA(0)

(1.20) *1(1) - UT In(- j) + UC(O)

holds.

After an appropriate scaling we carry out an asymptotic analysis of the

problem (1.1) - (1.12) where the (dimensionless) quantity

S T  2) 1/2

q maxlc(x)1I
xe [-t,]

acts as a perturbation parameter.

We investigate the behavior of the solutions as X + 0 which corresponds

to very high doping (which is the case for modern devices). It turns out that

there are two different timescales intrinsically present in the equations

-4-
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(1.1) - (1.5). However if we choose the initial conditions ' n, and p,

in (1.10) - (1.12) to be the solutions of the steady state problem

(1.22) S (n p - C)

(1.23) Jn - q(Dnn - mnnlx)

(1.24) J - -q(D ppx + 0pP*x )

(1.25) J = R , J = -R
x

the solutions will vary only on the "slow" time scale (which is of the same

order of magnitudo as T the average lifetime of electrons and holes).

Although the other ("fast") time scale is not present in this case, it causes

severe stability problems for numerical methods to solve (1.1) - (1.12). We

derive a finite difference method for problem (1.1) - (1.12) which is

unconditionally stable and of second order in time. At each time step the

solution of two coupled nonlinear differential equations is required. The

generalization of this method to nonsymmetric p - n junctions (i.e. C(x)

not odd) and to two or three space dimensions is straightforward.

This paper is organized as follows. In Chapter 2 we scale problem (1.1)

- (1.12) and reformulate it as a singular perturbation problem. In Chapter 3

we review the asymptotic analysis for the steady state problem (1.22) - (1.25)

given in Markowich and Ringhofer [1982] and Markowich et al [1982]. In

Chapter 4 we derive the asymptotic expansion of the solution of (1.1) -

(1.12). In Chapter 5 we construct the finite difference method. In Chapter 6

we present some numerical results on a test problem.

,



2. Reformulation as a singular perturbation problem

In this chapter we scale the system (1.1) - (1.5) appropriately and

transform it into a singular perturbation problem. Essentially we use the

scaling given in Markowich and Ringhofer [1982] and Markowich et al (1983a].

We scale the independent variables x and t by the characteristic length of

the device and by the average lifetime of electrons and holes.

(2.1) x =  , t at

For the dependent variables #, n, p, Jn and Jp we employ the following

scaling:

(2.2) 8 L n =p 5  1

T C C

(2.3) j n i n , J i p

s qD n S qDp

(2.4) C : max IC(x)I

xe(-1,1

In this scaling equations (1.1) - (1.5) assume the form

(2.5) 2 a2
ax

5

a TD

(2.7) t js - n + R

ID

S(2.7) a P -2 aY~ ,,.

at8 a 2  x p

(2.8) n M ns - ns

(2.9) J - a -
Pe x Ps Ps Xs *s

(1T 1/2 C(x)

IqC C

2 n i
(2.11) R = (nP -s n + ps + 2a) a=- •

5 5S C

A . .- 6-
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The boundary conditions (1.6) - (1.9) transforms to

(2.12) n -+ ( k2 v + 4,m2)

_ __+VI_2 + _Q 
a t - ±:t 1

(2.13) p +C 2  2

Ult) n(1-11

(2.14) a (-1,t - uT +In(

Uc(ts) + n(l )

(2.15) *5(1,t8 ) - c .n1

T ( a

The initial conditions transform to

(2.16) *(x ,O) - *(x) (x)
a5 a5a UT

(2.17) n(x ,0) - n(x) nlx)
a a

C

(2.18) pa(x a0) - p!(x ) p (x)

The quantities in (2.5) - (2.18) are now dimensionless. Using the numerical

values given in Table 2 for the physical parameters gives (after omitting the

subscript s)

(2.19) )2,x x - n -p C

(2.20) nt -n + R ti p +R

(2.21) J' - n n , J -p -p px

together with the boundary conditions

(2.22) (-1,t) - #*l(t) , *(1,t) - t)

(2.23) n - (C + IC2 + 4A2 ) , - (-C + c2 + 462) , x - ±1

where and #, are given by

-7-
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*(t)~~~~ 2i'U~)+ ,(1 + /C-1 2 2
-1 U~ )+I( 2a

(t) U (t) + X£(C(1) + /C(1)

and the initial conditions

(2.24) *(x,0) - *(x), n(x,0) = n Wx, p(X,0) -p (x)

(2.19) - (2.24) represents a singularly perturbed system consisting of an

elliptic equation (2.19) and two parabolic conservation laws (2.20)-

(2.21). The compatibility conditions (1.16) - (1.20) now read

(2.25) * z(-I) - *-,(0), * 1(1) - 10

(2.26) ni I .I (C + & 2 + 4a2), p1 -. (-C + VC2 + 4Q2), x =±

(2.27) 2 I.n I- p I-C

In the following chapter. we will carry out our asymptotic analysis for (2.19)

- (2.24) for X + 0 which corresponds to very high doping (C + -). This

usually is the case f or modern devices. For the set of parameters given in

Table 2 of Chapter 1 and a maximal doping C 10 17ci -3 would take the

value I - 10 We now use the fact that C(x) is an odd function to

simplify (2.19) -(2.24): If we substitute

(2.28) *(x,t) - *(x,t) - 1~ (*1 (t) + *- 1(t))

Equations (2.19) -(2.21) remain unchanged.

The boundary conditions (2.22) become

and the initial condition for # in (2.24) has to be replaced by

(2.30) *(x,O) 7* 1x (x) - 1 (*(0 + * ()

(2.19) -(2.23) can now be simplified by the "Ansatz"

V.V



(2.31) 41(-x,t) - -4(x,t), n(-x,t) = p(x,t), J~ (-x,t) = J (x,t),

For the rest of this paper we assume that this "Ansatz" is compatible with the

initial conditions (2.24). Thus we make the

(2.32) Assumption: , nI and pI in (2.24) satisfy

(2.33) Ix) = - (-x) + *1 (1) + *1 (-1), n (x) = p I(-x)

The "Ansatz" (2.31) gives the conditions

(2.34) j(0,t) = 0, n(0,t) - p(0,t), Jn(0,t) = JP(0,t)

Thus we obtain the simplified problem on [0,1]

(2.35) X2 _x_ = n - p - C

(2.36) nt + R

(2.37) Pt - -Jpx + R

(2.38) Jn = nx -i nx

(2.39) JP = -Px -P*x

x e [0,1]

(2.40) 4(0,t) = 0, n(0,t) = p(O,t), J (Ot) = J (0,t)
n p

=1 2 2
(2.41) 1(1,t) = *1(t), n(l,t) ( 1C(1) + VC(1) + 4c2 ) ,

p(1t) = 2 (-C(1) + /C(11
2 + 4a2

1

(2.42) *(x,0) -I (x) , n(x,0) = n Ix), p(x,0) = p Ix)

(where for simplicity we have written 4, 41,11 instead of 4, *I and

Remark: The reason, why (2.35) - (2.42) is simpler than (2.19) - (2.24), is

that the solution of (2.19) - (2.24) will exhibit an internal layer at x = 0

which can be treated as a boundary layer in (2.35) - (2.42).

,9.,



3. Review of the Singular Perturbation Analysis for the Steady State Case

We now review the singular perturbation analysis carried out in Markowich

and Ringhofer (1982] and Markowich et al (1983a] for the steady state problem

*2 xx =n-p-C(3.1) x_ - - -

(3.2) Jnx R , n nx -n*x

, (3.3) JPx =-R J p -px- p#x

(3.4) R = ( p 2)(n+p + 20-1

(3.5) *(0) - 0 , (1) - 1

(3.6) n . (C + ,,2 + 4.2), p (-C + VC2 + 4Q2), x _ t

2 2~

The purpose of this review is twofold: On one hand there will be a fair

amounbt of analogy between the asymptotic behavior of (3.1) - (3.6) and the

behavior of (2.35) - (2.42) on the "slow" time scale. On the other hand the

initial values 4I, n and pi in (2.42) will usually be the solutions of

the steady state problem (3.1) - (3.6) and it is thus important to know their

structure. Markowich and Ringhofer [1982] derived an asymptotic expansion for

the problem (3.1) - (3.6) in powers of X. This expansion is of the form

Ai

(3.7) w(xA) (wW(x) +

(3.8) w = (*,n,p,J nJ p)T

Thus the solution of (3.1) - (3.6) can be represented as the sum of a smooth
d i

part (which has an asymptotic expansion I vi (x)X ) and a boundary layer
i=o

term at x = 0 which varies on the space scale x/X and has an asymptotic

expansion of the form wi(x/A)Xi. The solution of the reduced problem
i=o

w0 satisfies the equations

-10-
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(3.9) 0 - n 0 - c

(3.10) %o " R(n0 p°) * DO W "R(n°'0 °)

x x

(3.11) J n n -n A M 0 x;°W
0 x x PO x x

(3.10) - (3.11) is a system of 2 second order ordinary differential equations

(obtained by inserting the expressions (3.11) for the current densities Jn

and Jp into the continuity equations (3.10)) coupled to the algebraic

condition (3.9). Thus we can impose two boundary conditions at each of the

boundaries x - 0 and x - 1. These boundary conditions are

(3.12) expl-*o(0))n 0 (0) - expl[O(0)]p 0 (0)

(3.13) p (0) /C (0)
0oP

13.14) ~;o1)  -*1 ' 1 "(..
02

Note that the boundary conditions (3.14) together with (3.9) imply the third

12 2
boundary condition n - j (C + iC2 + 4a2) in (2.41). This is why no boundary2A

layer occurs at x - 1. The zeroth order layer term w0  satisfies the

relations

(3.15) n 0() - ;o(O){exp[*o(C)] - 1), ;0(C) - ~0 (O){exp[-*O(C)] - 11

(3.16) 0(C)- PO (C)-0p0

:- X/A .I

0 satisfies the second order o.d.e. problem

(3.17) * o  "no -"P p o() - 1] - 0()e - 11
A A

(3.18) 010 - - o 0 - 0 .

-11-
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Thus for the zeroth order approximation of w we have a boundary layer at

x - 0 in the variables *, n and p. Jn and Jpdo not exhibit a boundary

layer at x m 0.

-12-



4. Asymptotic Analysis for the Time Dependent Problem

In this chapter we carry out our asymptotic analysis for the solution of

(1.1) - (1.12) as I tends to zero. As we will see the choice of initial

conditions crucially influences the asymptotic behavior of (1.1) - (1.12). We

assume that the initial values 4I, nI  and pI have an asymptotic expansion

of the form

w (xX) i [;'(x) + wI(P)]
i-o

(4.1)

I I I T I-wI - (4',n ,p )T *wI( )l Clexp(-C 2r)

This choice is of course motivated by the structure of the solutions of the

steady state problem (1.17) - (1.20). First we derive our asymptotic

expansion for the solution of (1.1) - (1.12) which varies on the slow time

scale ti i.e.

ai
(4.2) w(x,t,X) - C;(xt) + X i1,01A

w i (Xi A

In order for this expansion to be valid, it will be necessary to impose

certain restrictions on the initial values * I, nI  and pI. These conditions

will be satisfied if 4InI and pI are the solutions of the steady state

problem (1.17) - (1.20). The zeroth order term w0  of the outer solution

satisfies

(4.3) 0 no - PO c

(4.4) (a) nt - nO - R(On0 , (b) p - -0 R(o
0t n 1o0t PO xp

x x

(4.5) (a) Jn " n0  0-0' (b) J p M 0  -OO

Substracting (4.4)(b) from (4.4)(a) and replacing n0 by Po + C gives

-13-
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(4.6) o - 3 0x, 3 0 3 no + .7P - C - (2 0 + C ; xR(' 0 + 1

(4.7) 0  P PC + C 5 x
t 0  p0  x

K

(4.6) is now a second order elliptic equation for 0 coupled to the

parabolic equation (4.7) for pO. Thus we can impose two boundary conditions

at each boundary x - 0 and x 1. &t x -1 we impose the conditions

I PO 2

Note that - as in the steady state case - (4.8) together with (4.3) implies

the third boundary condition n0 (1,t) - (C(1) + IfC(1) 2 + .82) in (2.41).

Thus we have satisfied all three boundary conditions at x - 1 with ;0"

'This is the reason why there is no boundary layer at x - 1. Inserting

Ix) + wo() into equations (2.35) -(2.42) gives

A 
A 0 o _ 2(4.9)*o " ;o - o -

AA +A ~A

(4.11) no [aot + (lno + n0, po + p0) + R(n01 0o)

(4.11) n " - R o no ( n ) 0 + .An

A A 1% A A

(4.13) AJno  W -P O ( o + Pop )* " A;0o o

0 gives

(4.14) 0 n0 p0 O

(4.15) .7 - -o
no0 PCq

n + C 0 + o1°'t) + o)*o 0

(4.16) 0 - + 0O 0 -0, o

-14-



since 3W0 (C't)U C C1(t)exp[-c2(t)C1 has to hold, w(-,t) -0 holds. Thus

we can integrate (4.15) and (4.16) and obtain

(4.18) n,(C,t) - ii0(O'tWexp(4i0(Ct)) -1)

(4.19) p0 (C't) - 0 (O't)(exp(-*^(Ct)1 -11

(4.20) *0 n n0 - Po

Inserting. ;0 +1; in the boundary conditions gives

(4.21) ;0(0 ,t) -4o(,t

(4.22) 0(O0~~1( 0() (,t)exp( -*0 (Olt)3

(4.23) 3 n0(o,t) - 3 (O,t)

oining (4.21) and (4.22) gives

(4.24) n(O,t)exp(4(O't)] - (O't)eXPEW(O't))

which together with (4.23) gives the boundary conditions for the reduced

problem at x -0. We now investigate the initial conditions for the reduced

equations (4.3) - (4.5). Since equation (4.6) in elliptic it has to hold also

at t - 0. This gives the condition

(4.25) [C - (*I + C);']x -

x 0 Ox

(4.26) n (OOW40 -O()expE-;IT(O)J

(4.27) ;,(1) -* 0

on the zeroth order term of ;'(X,)). Also the layer equations (4.14) -

(4.16) have to hold for t - 0 since they are time-independent. This gives

the condition



(4.26) 0 0I

on VW0. quation (4.14) has to be satisfied because of the compatibility

steady-state problem (3.1) - (3.6). Thus, if conditions (4.24) - (4.27) are

'.I A Itsatisfied we have determined the zeroth order term w + W0 of the expansion

(4.2). We sumarize this in the

(4.28) Theorem:

If w (x,A) has an asymptotic expansion w (w(x)+ wi T IA

I1 #In IT -1 I3 i-o
w1 - (* *n 'p ) and WO and w satisfies the conditions (4.24) - (4.27)

(as it is the case if w is the solution of the steady state problem (4.1) -

I (xtt) satisfies the equations
(4.6)) then the zeroth order term w0= O, = p-c x - (20+c)X0

(4.29) 0 n0  0  x x

(4.30) Ot - PO + ' (O + C, 0 ) po - -i x - P0 x

together with the boundary conditions

(4.31) GO,t) + C(O)]exp- O(,t)] - Po(O,t)exp[o(l,t)]

(4.32) J0 (O,t) - 21 O(O,t)

(4.33) ;0 1,t 1 - 1t), ( ,t) =  ( C(1) + ,C(1)2  + *Q2)

and the initial conditions

(4.34) Po(x,O) PO(X)

The zeroth order layer term Wo(Ct) satisfies the relations

(4.35) n0(l,t) 0 (0,t)[exp(*o(Ct)] - 11

1 
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(4.36) pO(Ct) - po(Ot)[exp[-*O(,t)] - 11

(4.37) n - j - ono P

(4.38) 0 n 0 P O' *0 (O't) " "0 (Olt ), ;0 (' ,t) - 0

So we have determined the zeroth order approximation to the solution of (2.35)

- (2.42) in the case that the initial functions 0 , ni and pi are

solutions of the steady state problem. This expansion varies in time on the

timescale t. Thus the reaction time of the p - n junction (the time it

takes the system to reach another steady state if we vary the bias) will be of

this order of magnitude. ussential for the derivation of this asymptotic

solution was the fact that (4.24) - (4.27) was satisfied for the initial

values. Although this will be the case for all practical purposes (since we

always start with a steady state solution) it is of some interest to see what

happens if conditions (4.24) - (4.27) are violated. This is the case if we

solve (2.3S) - (2.42) numerically and our numerical solution is "polluted" by

a discretization error. For this purpose it is convenient to rewrite our

problem (2.35) - (2.42): We elliminate n from (2.36) - (2.38) by

substituting n ) 2*xx + p + C in (2.36) - (2.38) and subtracting (2.37)
-1.C

from (2.36). This gives

(4.39) A 2 * x' '
J  - J + = Cx + A - (2p + C + X 2

-x n p xx
(4.40) = -j - R, J p - "px -P~x"

We now supplement our expansion (4.2) by a term w(r,x,X) which varies on

the fast time scale T = tX-" , Y > 0 (where y still remains to be

determined)

-17-
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W3 - 2JUIMI -M -2 -i Ij %V -. P ~ -- T -pX~ Win -. *, p - .-

(44)w(x,t,%) ) E Ew1(x,t) + w i(q,t) + W-i (xir)]A

(4.42) *wi(xr)I 4 C I(x)exjp(-C 2 (x)r), i - 1,2,

Inserting (4.41) into (4.39) gives

2 --o( 2 j ( 2p2+ c- A # + +A2 I
(4.43 X Xxx xx xx

(443 - (20+ 1 2 ; #0

(4.4p) PO T 3 YP - -po - (p0 + p0 )i0  -P0OOx

where #,and postand for the zeroth order expansion on the slow tinscale

to

(4.45) 0 #0 0 *(CkYr)

(4.*46) p0 -p(x,), Y) + OCxT

A.0 in (4.44) gives P0 T- 0 which together with (4.42) implies p0 = 0.

From (4.43) we see that the only value of y vhich produces a nontrivial

solution away from x -0 is y - 2.

Thus we set T and let k tend to zero in (4.43) - (4.44). This
A2

given

(4.47) -o -f2pO + C)*0 1

(4.48) p0 = 0

For a complete asymptotic expansion in the case of general initial conditions

we refer the reader to Rinqhofer (19931.

L-18-



5. Finite Difference Methods

In this chapter we develop a finite difference scheme for the solution of

problem (1.1) - (1.12). Severe stability problems arise because of the

presence of the fast time scale (t/ 2 ) in (4.47). To illustrate this we

first consider a "naive" discretization of (2.35) - (2.42): First we only

discretize (2.35) - (2.42) in time and leave the space variable x

continuous. Thus we define a sequence

(5.1) (tk , 0 - to < .... < tk < .... )I ANk :- tk+ 1  tk , k - 0,1,...

and 4aenote the function v(x,tk) with

(5.2) vk(x) - v(tkx), v - (*,n,p,JJ P)T, k - 0,1,...

As a first approach one would perhaps try to solve equations (2.35) - (2.42)

by a Crank-Nicholson scheme and solve Poisson's equation (2.35) implicitly on

the new time level. This would give

2 k+ . n+1 k+1
(5.3) X 2*xk+1 nkx - - cxx

nk+1n Ik+(5.4) n - nx + ik)

(5.5) p pk I (k+l + Jk

(s s) *~ - -

(5.6) Jt n. n I*tn x x
9-k, k + 1

(5.7) x . l JPx

As we saw in chapter 4 the part of the potential * varying on the fast time

scale (t/X ) satisfies the equation

.X -[C x - (n+p)x]x

Time differencing equation (5.3) and inserting the expressions nk+ 1 - nk

S k+1 . k from (5.4) - (5.7) yields

-19-

A %m~~~~~~~~~~~~~~~~~~~. .. ..... ,..'.... '.....'......,.......-......,........ ........
%,,-,,,' ,,. , .. ', , ,' . .; . % - - . .- .- "~ - .- * ... . ***,• ..-- ..- . . - % - . . . . . . . . . . , ...



k+1 k
, 2xx 'xx I -(nk++ pk+1 .k+l nk pk)*k + 0()215.8) ht. i 2 [2c n +p )*~ -(n +p4] +O

'&k2 x x Xx
k

Thus away from the boundary layer at x = 0, #D will behave like the
XX

solution yk of

(5.9) )2 y -I y k 1 kk ak+lyk+1) fk' 2 ( aky +a )+f,ak>O0

'&tk itk
.' Atk

which oscillates wildly unless - < const holds. To derive a scheme which

does not need this severe restriction on the time steps we rewrite (2.35) -

(2.42): We proceed as follows: We first discretize (2.35) - (2.42) in the

apace variable x. Thus we define a mesh X and a meshsize h by
I

(5.10) X : xi :xi M ih, i - O(1)NI, h - - •i N

(For the sake of simplicity we assume a uniform grid. The generalization of

our results to nonuniform grids is straightforward.) Realistically we have to

assume that h >> ) holds.

We approximate (#,np)T at xi by the gridfunction (*i,ni,pi)T,

i - 0(1)NI We approximate the currents (JnJp ) at x ) : (xi + xi+1}/2
2

by ((n 1 J7 1, J w 01-1N-1. For a gridfunction {zi , i -0(1N} we

i+ 
Fl--

2 + 2

define the discrete operators D+, D- and M by

(5411) (D+z)i - zi+I - zi , (D-z)i - zi - ziI

(5.12) ( + Z

We discretize (1.1), (1.2) and (1.3) by

(5.13) 12h-2(D+D_*)i - ni pi - C(xi)

(5.14) n " -J )/h
dt1 n 1

-20-
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id
(515) P )/

tp 1 p 1

For simplicity we set the recombination rate R - P. For the discretization

of the current relations (2.38), (2.39) we use an exponentially fitted

scheme. This scheme was first proposed by Scharfetter and Gunmel [1969J and

4'analyzed in a singular perturbation framework by Markowich et al [1983b]:

(5.16) Jn [O(D+*i)(D+ni) - (nillD+*il]/hi

(5.17) - [-o(D+*i)lD+p l )  - (MPi)(D+*i)]/hi

2

Q(z) :- coth (z)

The boundary conditions transform to

(5.18) *0 (t) - 0, N (t) - POt), (t) 1 (t)

2 2 2

(5.19) % (t) - *(t), % (t) - (-C(I) + C(112 + 42), %(t) = P(t) + C(1)~~1

and as initial conditions we impose
0 0

(5.20) *(a) 0 *:, ni(0) = n i, p0(0) - i = 1(11N-1

Where for the sake of compatibility we assume

(5.21) X 2 h-2 D+D - #0 ni - P - C(xi)' i - 2(1)N-1

(5.13) - (5.20) is an initial value problem for a system of 2(N-1) ordinary

differential equations coupled to the N - 1 algebraic equations (5.13). we

now eliminate the algebraic equations (5.13) by differentiating (5.13) with

respect to t and inserting for nt and pt from (5.14) and (5.15). We

obtain

-21-
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(5.22) X2 h-2D+D"(J+ "i )/h
dti+ I i--

2 2

(5.23) 1 " I + J - O(D+*i )(D+n i  D+P )

2-i+ i+-
*2 2

(MnI + MPt)(D+*i)]/h

We now eliminate ni  from (5.23) by using (5.13) and the boundary conditions

(5.18), (5.19)

(5.24) n± = P, + ViC(xi) + wi X2h- 2 +D-i

11 i 0,.'1 i#0

(5.25) Wi : vi  I i
(0 I 0,N' 0 i

Thus we obtain the system

(5.26) X2hI (D D *)# -(Ji - i
(5.261- *l i+" - i-.-

2 2

(5.27) hJ - (o(D+*i)D+(C(xi))-- M(2p+C)i(D+*i)i +

+ X2h-2[OID+#iID+lwD+D i - (MwD+D-))i (D +)I

which approximates the fourth order differential equation

(5.28) A2 xx t  i x

(5.29) 1 -Cx - 12p+c1* x + X2 xxx - X 2xx x

The problem consisting of (5.15), (5.17), (5.26), (5.27) together with the

initial conditions (5.20) for pi and *i is equivalent to the original

problem (5.13) - (5.17) if we define ni by (5.24).

Inserting (5.24) into (5.23) we obtain

(5.30) X(DD D 1- D_[O(D+*)(D+C) - MI2p+CIID+*I] + 0(4
dt +(2+C+D$)i h

-22-
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p.... . . .

(5.31) P) h D-[a(D)(D+P) + (Mp) (D+

To avoid the stability problems outlined at the beginning of this chapter

(5.30) has to be discretized by backward differencing. (5.31) can be

discretized by the trapezoidal rule (or the Crank-Nicholson scheme). The

terms abreviated with O(A 2h - 2  in (5.30) can be taken at the previous time

step since we assumed Ah-  << 1. Thus we approximate *i' nif pif J  If

k k k k k and obtain
. at t -tk by *k, hi, P1 ' .+ a ip

2 1+

2 k k+ 1 k+1

(5.32) X 2(h,At)- D D (D k+I k i  I - jki1

-+ 1 1

(53) (WI.( k+1 _ pk 1 (jk+l _ jk+1 + j k + jk )/h

2.3 2 p 2 I Ii+ T i- i i+ I i- 2

Wjk .( k+1 - M(2pk+1 + C) (D +*k+1) +hJ lD ) (D+C)i
i+1 +- + 1 -(+2

(5.34)

+ 2 h2 [(D4k )D+(w(D+D_k)) - M(wID+Dk)) (D+ k) i

k* + k +k*

(5.35) hJk --a(D+ k)(D+pk) i - (Mpk )(D+*k)k

p i1

. k.k+1 1 1 k+2(,. 5.36 ) Of =b (, = @ l k+1)

(- 5.37) 2J k+l= _+1 k~+1 (t[CI 1() *

P1 1  =N lbtk+1) 2 -()+412+42

This corresponds to solving the differential equations

(5.38) E ( -k+l # k [C (2pk+l + C)# k+1 + 2 k )x 2 k.
At 38( xx x xxx x x

-23-
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i =. ,, ,,_, L , ,. ,, , , . . . ,, .- - m .,.,.. ., .* ..

(5.39) (At)=-1 I - k 1 , k+l + pk+ltk+l 1 k•~~ " 531-p) x x x i 3Px

at each time step, which represent a coupled system of two nonlinear equations

for # and p. (5.33), (5.35) (or (5.37)) represent a second order time

discretization for (5.15), (5.17) whereas (5.32), (5.34) only is a first order

•time discretization for (5.22), (5.23).

2
The time derivative in (5.22) is multiplied by . Thus the method is

actually convergent of order

O[UAt) 2+ A At]

where At denotes the maximal time step. Since for practical purposes

At >> X will hold we can say that the method is actually of second order in

*time. A detailed analysis of the stability and convergence properties will be

the topic of a subsequent paper.

.,

I

..,I
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6. Numerical results

In this chapter we present numerical results for two test problems which

were solved by the technique outlined in the previous chapter. The

'A computation was performed on a VAX-780 computer in double precision (which

provides 14 significant digits). The physical parameters were taken from

Table 2 in Chapter 1. We took a constant doping profile on the interval

[0,1]. The maximal doping (C in Chapter 2) was taken to be 101 7cm- 3 . The

characteristic length 21 of the device was taken to be 5U. This

corresponds to - - . As initial values the solution of the equilibrium

problem (that is the steady state problem with zero bias applied) have been

taken on the interval [0,1]. 21 equally spaced gridpoints were taken in

the x direction (h = 0.05). As time steps we used Atk = At = 0.1,

i: ' k = 0,1,2,... . (No stability problems were encountered when we varied At.)

i Two cases have been simulated: First we switched from the equilibrium to a

reverse bias of 0.25V. In the other case we switched from OV. (equilibrium)

to a voltage of 0.25V forward bias. This corresponds to a variation of the

boundary condition #l(t) in (2.41) from #, = 16.12 (- O.V) to = 21.12

-( 0.25V reverse bias) in figures 1, 2 and 3 an to a switch from *1 = 16.12

,. 0.V) to #1 - 11.12 (- 0.25V forward bias) in figures 4, 5 and 6.

We plotted * and the hole density p on the interval [0,13. The

electron density n would be given by

n(x,t) - p(x,t) + C(x) + X * (xt)

Thus away from x - 0 it differs visually from p only by the (constant)

function C(x). To obtain a picture of the full solution on [-1,1] , n

and p would have to be continued according to #(-x) - -*(x), n(-x) = p(x).

j In figures 3 and 6 we plotted the value of the total current

J(t) - ]11 Jn(Xt) + J (x,t)dxnR p

-25-
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as a function of time.

in detail the figures 1 - 6 show:

Figures 1 - 3: Switch from W.V to 0.25V forward bias

Figure 1i *(xt), Figure 2: 1oq10 (p(x,t))

Figure 3: iog10 (J(t))

Figures 4 - 6: Switch from 17-V to W.25V forward bias

Figure 4: *(x,t), Figure St loq10 (p(x,t), Figure 6: 1og10 (J(t))
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FIGURE 1
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FIGURE 2
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FIGURE 3
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FIGURE 5
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FIGURE 6
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